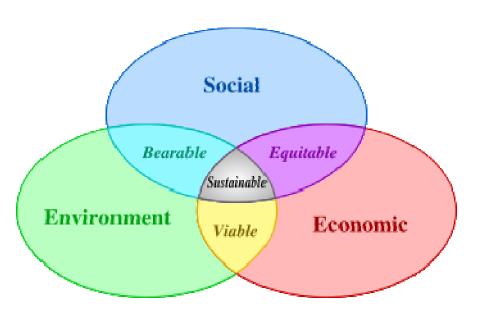

Potenzialità della Phytoremediation nella bonifica sostenibile dei siti contaminati

Prof. Gianni Andreottola Università degli Studi di Trento

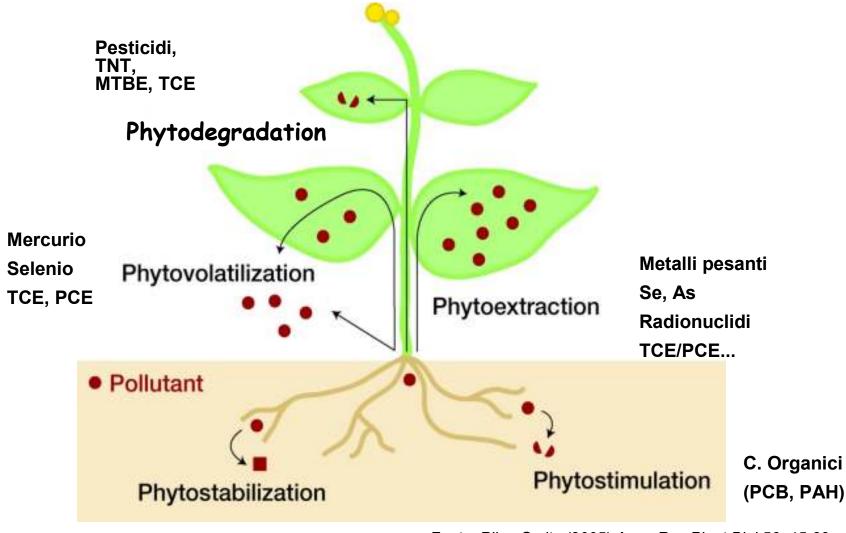
Siti contaminati in Italia


- Numero siti (dati ISPRA, 2012):
 - 15.000 siti potenzialmente contaminati;
 - 4.314 siti contaminati;
 - oltre 5000 siti nei quali sono stati avviati interventi di messa in sicurezza e/o bonifica;
 - oltre 3000 sono i siti bonificati
 - 5.500 chilometri quadrati di aree terrestri contaminate
 - 1.800 chilometri quadrati aree marine, lagunari e lacustri contaminate
 - Dal 1998 al 2010 lo stato ha stanziato complessivamente una cifra pari a € 1.823.556.899,73 (Beretta 2010).
 - Una tale numerosità dei siti contamianti richiede una riflessione sulla sostenibilità degli interventi di bonifica

Evoluzione dell'approccio al trattamento dei terreni contaminati

IDENTIFICAZIONE DI UN INTERVENTO SOSTENIBILE DI BONIFICA

 Identificare, facendo uso di indicatori e di strumenti decisionali (LCA, tools specifici) l'intervento di bonifica che massimizza i benefici rispetto ai potenziali impatti in tre ambiti (ambientale, sociale, economico)


OBIETTIVI DELLA GESTIONE SOSTENIBILE DELLE BONIFICHE

- Minimizzare o eliminare il consumo di energia e/o il consumo di altra risorse naturali;
- Ridurre o eliminare le emissioni della bonifica nel'ambiente, soprattutto in atmosfera;
- Incoraggiare l'utilizzo di processi di bonifica passivi, che minimizzino le attività di escavazione;
- Incoraggiare l'uso di tecnologie di bonifica che distruggano in modo permanente i contaminanti

Superfund Energy & Carbon Footprint Analysis (EPA, 2009)

Remedy	Estimated energy use Annual Avg. (kWh*10³)	Total estimated energy use 2008-2030 (kWh*10 ³)	Estimated CO2 emissions Annual Avg. ² (metric tons)	Total estimated CO2 emissions 2008– 2030 (metric tons)
Pump &Treat	489,607	11,260,969	323,456	7,439,480
Thermal Desorption	92,919	2,137,126	57,756	1,328,389
Multi-Phase Extraction	18,679	429,625	12,000	276,004
Air Sparging	10,156	233,599	6,499	149,476
Soil Vapor Extraction	6,734	154,890	4,700	108,094
Total	618,095	14,216,209	404,411	9,301,443

Principali tecniche di Phytoremediation per i suoli contaminati

Fonte: Pilon-Smits (2005) Annu Rev Plant Biol 56: 15-39

Piante più utilizzate per la Phytoremediation

		Type of Plant													
Type of Contaminant	Medium	Alfalfa	Alyssum	Bald cypress	Black locust	Cottonwood	Grasses	Hybrid poplars	Indian mustard	Pennycress	Red Mulberry	Stonewort	Sunflower	Water hyacinth	Willow
Organic	Soil			PD RD			A RD	PD RD			A RD	PD			PD RD
	Sediment			PD RD			A RD	PD RD			A RD	▲ PD			PD RD
	Groundwater			▲ PD		HC		HC PD				▲ PD			HC PD
Inorganic	Soil	▲ PV	▲ PE		▲ PV		PS	PE PS PV	PE PS PV	▲ PE			▲ PE		
	Sediment	▲ PV	▲ PE		▲ PV		PS	PE PS PV	PE PS PV	▲ PE			▲ PE		
	Groundwater					▲ HC		▲ HC	A RF				A RF	A RF	▲ HC

▲ Plant is effective for the type of contamination and medium shown.

HC Hydraulic control

PD Phytodegradation

PE Phytoextraction

PS Phytostabilization

PV Phytovolatilization

RD Rhizodegradation

RF Rhizofiltration

Principali contaminanti trattati a scala dimostrativa o reale con la Phytoremediation

- Idrocarburi petroliferi
- BTEX (benzene, toluene, etilbenzene, xilene)
- Composti aromatici clorurati
- Esplosivi
- Metalli pesanti
- Radio nuclidi

Fitoestrazione

 Sfrutta la capacità di alcune piante di estrarre i metalli dal terreno attraverso l'apparato radicale e di concentrarli in germogli e foglie.

Specie vegetale	Metalli accumulabili
Artemisia princeps	Cd, Zn, Cu, Pb
Beta maritima	Pb, Cu, Zn
Brassica campestris	Pb
Brassica nigra	Pb
Brassica juncia	Cd, Ni, Pb, Se
Poa annua	Cd, Cu, Ni, Cd, Zn, Pb
Brassica hirta	Hg, Pb

Vantaggi della fitoestrazione

- Limitata attività di scavo e movimentazione
- Notevole riduzione dei costi di bonifica
- Positivo impatto su ambiente/paesaggio
- Possibile recupero a fini energetici dei materiali estratti

Potenziali limitazioni della fitoestrazione

- Estrazione limitata alla profondità di esplorazione delle radici
- Biodisponibilità e concentrazione dei metalli
- Tempi di bonifica anche molto lunghi (lustri)
- Concentrazioni elevate di metalli nella biomassa vegetale (costo di smaltimento)
- Uso di chelanti che possono mobilizzare i metalli verso l'acquifero

Prospettive e sfide

- Applicazione della Phitoremediation in combinazione ad altre tecnologie in situ (SVE, biosparging/bioventing, ISCO, ISCR, elettrossidazione)
- Integrazione della Phytoremediation con la filiera Bioenergy
- Creazione di Green Farms specializzate nella selezione e produzione massiva di piante da impiegare nella Phytoremediation
- Definizione di linee guida progettuali e gestionali della Phytoremediation (test di trattabilità stadardizzati, protocolli di monitoraggio, bilanci di massa)